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Integral Numerical Tecluique for the Study of

Axially Symmetric Resonant Devices

J. RUIZ, M. J. NUI%Z, A. NAVARRO, AND

E. MARTiN, MEMBER, IEEE

,4bstracf — A nnmerical tecbniqne is proposed which is based on the

conpling of Klrcbhoff’s integral formulation and the moment method and is

suitable for application to the study of a wide class of axially symmetric

resonant devices. Numerical resnlts are presented and compared with

corresponding theoretical data for two systems which allow an analytical

treatment. In this way the vafidlty of method has been confirmed.

I. INTRODUCTION

This paper presents a numerical technique which is based on

Kirchhoff’s integral formulation for the electromagnetic field and

which is valid for the study of a wide class of axially symmetric

resonant devices.

Among the numerous methods that exist for finding approxi-

mate solutions to the field problem in various devices [1], there

are some that offer greater accuracy when determining resonant

frequencies and other characteristic parameters, au accuracy

which today is a technological necessity (e.g. satellite communica-

tions). Among these sophisticated methods we can mention those

based on a dielectric waveguide model [2]–[4], a mixture of the

magnetic wall and dielectric waveguide models [5], finite elements

[6], a variational method [7]-[9], and, lastly, Green’s function

techniques [10], which are very powerful given that they can be

applied to very different situations.

With regard to the Green’s function methods, those which

incorporate the free-space Green’s function and which are based

on a surface integral approach stand out for their simplicity.

Usually these methods consider bound systems and use equiva-
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Fig. 1. Geometry and cylindrical coordinates for a body of revolution and

the orthogonal right-handed triad of unit vectors n, 8, 1 defined within the

boundary. Discretization of generating arc for body of revolution.

lent currents as a starting point (Glisson and Kajfez [10]). The

method presented in this paper is based on Kirchhoff’s integral

formulation with the free-space Green’s function (field compo-

nents are the basic entities involved) and allows the approximate

study of unbound systems.

II. NUMERfCAL METHOD

Fig. 1 shows the kind of systems which we are interested in.

They are composed of different lossless homogeneous regions

with axial symmetry along the Z axis. This symmetty allows

special modes to be defined, which correspond to diverse (and

usually complex) resonance frequencies of the structure and

whose components (in cylindrical coordinates (r, f3, z) associated

to the system) would be as follows:

~(r, z). [acos(p6) +bsin(pO)], J )=0,1,2, . . . (1)

For each mode we use Kirchhoff’s integral equation in every

dielectric region of the structure and integrate with respect to the

angular variable, 0, (taking points r in the half-plane d = O

(Fig. l)). This results in a line integral equation extending to the

boundary L (6J= O) of the considered region involving only the
f(r, z) part of each field component:

Q(r)
~+(r) =pf(r, f’)p(r)dr (2)

where

e,

h,

+(r) = ;

e=

h,

#[
/t8[

A’/ 1

[ I
e.

ho
rp(l’) = e,

h[

(3)
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TABLE I
EXPRESSION OF COEFFICIENT MATRIX ,@

AI Ire z O’h. r’ + nz. (z’ - Z)l.13J

1 a
A12re(IJ, ~): J(-wc Unz12 +

nz a
—[12,. (nz-r>—) - nIi’l(— + —)1

wc~ 81, P. al,

AI~rl = (Z’ - Z). I~J

P r
Ai2r1(U, E) = J.[Wc PI~ + — [12, . —-. Ii,),

wc~ r,

Allee , nrPIiz - [nrr J + nz (2,-2)1 I?,

13’ d
A12ee{us~l = J ,[w@nz13’ - — (nz - r’—ll

Wcc al,

P
Aiiel : -(Z, - Z) 13, A12e1(LI,~) = -J[wc LJ12 + ‘13’ I

WCC

Aiize , _
nz r 13’

Ii’ Z’-z a
A12ze[LII~) = J(wCI%Il + — [nz-— - (z’-z). —II

WCC r’ al’

[

i
A22a~ ,

aB ❑ rl, ee, Z1
K.AiiaB K.

-1 otherwise

1 aEl = rl, 21
A2i@ , K,. Ai2aE K>:

-1 Otherwise
where:

~],pcose~:i%]de.=- ‘R: ‘r-”

[i J

1 ~ a, [11
1’2: 2r,.

dG ~
—.co=(e). =o S(@) de; G ,=_; n: [nr, o,nz )

3 R
0

sin(pe) ‘m

are, respectively, the whole field in r, its 8 and 1 components at a
point 1; of the boundary and a A6 ~, coefficient matr& (see Table

~. These depend on the medium’s geomet~, their electromag-

netic characteristics (c, p), the frequency COC,and the mode pa-

rameter p.

Equation (2) is solved by using a moment method technique.

The boundary L is divided into N intervals, AJ (see Fig. 1),

centered on the N points Q, (j= 1,2,. ... N). The fields in the

boundary q (1’) can be approximated by a linear combination of

pulse functions defined on the intervals AJ.

Then, a point matching technique is used, on the N points Q,,

by considering the different homogeneous dielectric regions of

the structure with its coupling boundary conditions. The follow-

ing system of equations is obtained:

~B,,,(%)~=O> ,.. ”,M
i=l (4)

j=l

where XJ represents all the unknown coefficients associated with

the fields in all the boundaries involved.

The solution of the homogeneous system of equations (4)

determines the frequency spectrum, c+, and the coefficients X~ of

the field components eO, ho, el, and h, in the boundaries. When

these coefficients are known, (2) can be used to calculate the field

components at any point r in the system.

III. APPLICATIONS

In order to verify the effectiveness of the described method, we

present some of the results corresponding to the analysis of two

systems which allow a simple analytical contrast: a) a dielectric-

TABLE II
THEORETICAL AND CALCULATED RESONANT FREQUENCIES (k. R> FOR

SEVERAL MODES OF (a) A DIELECTRIC-LOADED CAVITY (STRUCTU~&

AS IN FIG. 2(a)) R = 22.5 mm, L = 39 mm, T=19.5 mm, c, =10) AND

(b) A CYLINDRICAL DIELECTRIC RESONATOR SHORT-CIRCUITED AT

BOTH IENDS BY PARALLEL CONDUCTING PLATES

(STRUCTURE AS IN FIG. 2(b)) R = 7 mm,
L = 7.5 mm, <, = 35)

=

mode

%11
TE
111

T1.1
111

T:l
011

y+
012

TE
112

m{
112

TZ
012

m
013

kaR 1

them

0.935

0.987

1.333

1.509

1,760

1.882

2.056
.

2.249

3.190

(a)

mlcul.

0.953

0.976

1.323

1,508

1.768

1 .G67

2.013

2,241

3.160

d
0.620

0.712

0.810

9.877

1.9?3

1 ,Of;z

1.111

1.133

1.182

1.258

1.272

alcul.

0.628

0.712

0.813

f)..395

1.047

1.052

1.110

1.135

1.183

1.240

1.274

(b)

—

loaded metallic cavity and b) a short-circuited dielectric res-

onator (for trapped modes) [12]. Through these the most notice-

able aspects in applying the method can be seen.

Table II shows the numerical values obtained for the parame-

ter koR, where k: = Wzcopo, for different modes in the two

systems. In Fig. 2 we present the fields within the boundaries for

some of the modes appearing in Tdble II. The boundaries of the

systems are divided into (a) 44 and (b) 15 intervals.

As can be appreciated, with a moderate discretization the

results are generally quite accurate, with an error in the frequency

less than or on the order of 1 percent.
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Fig. 2. The distribution of the h@ field component at the metallic surface

(a) the TMOII and TElll modes on dielectric-loaded cavity and (b)

TMCU I and TMM modes on shielded dielectric resonator.

for

the

IV. CONCLUSIONS

The numericaf results obtained in studying several systems

confirm the validity of the method and its wide fields of applica-

tions. Theoretically it is worth noting the simplicity and general-

ity of the formulation, which allow such problems as unbound

systems to be tackled, something that is difficult with other

techniques. The complexity of the numencaf procedure is not

excessive and the consideration of a low number of intervals in

the boundary partition leads to quite accurate results (errors in

frequency being less than 1 percent).
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An Experimental Investigation of the Microstrip

Step Discontinuity

JAMES C. RAUTIO, MEMBER, IEEE

Abstract —Measuremeuts of a cascade of microstrip step discontinuities

are compared with results of an electromagnetic analysis and with models

available in commercial software. The experimental validation technique,

which can be applied to other discontinuities, is described.

I. INTRODUCTION

This paper describes a broad-baud validation technique as

applied to a step discontinuity y. The technique was developed for

the validation of the electromagnetic (em) analysis [1]-[3].

While there are many results for the step, most [4]-[11],

[17]-[19] specify non-50-O S parameters. Since the normalizing

impedances, which allow conversion to 50 Q (especially in regard

to reflection phase), are rarely specified, it is difficult to compare

results. Instead, we compare with the 50-0 s parameters pro-

vided by most commercial models.

Koster and .lansen [4] state that measurement of the step

“seems hardly feasible with the present state-of- the-art,” as the

discontinuity effect is small at low frequencies (where accurate

measurements are possible) and is difficult to measure at high

frequencies. Many validation attempts involve measurement of a

single discontinuity at high frequency, resulting in an undesirably

large scatter [8]-[14].

Resonance techniques [23] are especially suited to non-50-fl

modeling and could have been applied in the above cases. The

technique is useful for generating low-loss two-port discontinuity

models. The technique described here is applicable to lossy and

multiport validation but not for generating models or for non-

5042 systems. Our results suggest that the reflection phase of a
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