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Integral Numerical Technique for the Study of
Axially Symmetric Resonant Devices

J. RUIZ, M. J. NUNEZ, A. NAVARRO, AND
E. MARTIN, MEMBER, IEEE

Abstract —A numerical technique is proposed which is based on the
coupling of Kirchhoff’s integral formulation and the moment method and is
suitable for application to the study of a wide class of axially symmetric
resonant devices. Numerical results are presented and compared with
corresponding theoretical data for two systems which allow an analytical
treatment. In this way the validity of method has been confirmed.

1. INTRODUCTION

This paper presents a numerical technique which is based on
Kirchhoff’s integral formulation for the electromagnetic field and
which is valid for the study of a wide class of axially symmetric
resonant devices.

Among the numerous methods that exist for finding approxi-
mate solutions to the field problem in various devices [1], there
are some that offer greater accuracy when determining resonant
frequencies and other characteristic parameters, an accuracy
which today is a technological necessity (e.g. satellite communica-
tions). Among these sophisticated methods we can mention those
based on a dielectric waveguide model [2]-[4], a mixture of the
magnetic wall and dielectric waveguide models [5], finite elements
[6], a variational method [7]-[9], and, lastly, Green’s function
techniques [10], which are very powerful given that they can be
applied to very different situations.

With regard to the Green’s function methods, those which
incorporate the free-space Green’s function and which are based
on a surface integral approach stand out for their simplicity.
Usually these methods consider bound systems and use equiva-
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X

Y

Fig. 1. Geometry and cylindrical coordinates for a body of revolution and
the orthogonal right-handed triad of unit vectors #, 8, / defined within the
boundary. Discretization of generating arc for body of revolution.

lent currents as a starting point (Glisson and Kajfez [10]). The
method presented in this paper is based on Kirchhoff’s integral
formulation with the free-space Green’s function (field compo-
nents are the basic entities involved) and allows the approximate
study of unbound systems.

II. NUMERICAL METHOD

Fig. 1 shows the kind of systems which we are interested in.
They are composed of different lossless homogeneous regions
with axial symmetry along the Z axis. This symmetry allows
special modes to be defined, which correspond to diverse (and
usually complex) resonance frequencies of the structure and
whose components (in cylindrical coordinates (r, 8, z) associated
to the system) would be as follows:

f(r,z) [acos( p8) + bsin( pb)],

For each mode we use Kirchhoff’s integral equation in every
dielectric region of the structure and integrate with respect to the
angular variable, 6, (taking points r in the half-plane 6 =20
(Fig. 1)). This results in a line integral equation extending to the
boundary L (6 = 0) of the considered region involving only the
f(r, z) part of each field component:

N Y

p=01.2,---. (1)

(2

where

e, W
h, e
& L

v = | o(=|1,

e. h,
h.’.’

rAra A

A(r, Iy =] 4% g (3)
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TABLE 1
EXPRESSION OF COEFFICIENT MATRIX A%
40170 - [nprt 4+ ng-(2 - 2)]- Iy
) 1 J ny )
44T (W €)=Ji-Weinglp + ——[Ip".(Ng-T’ =) = DIg’](— + =)}
WeE a1’ re 91
ATl = (20 - 2). 10
P r
AgpTH(D, €) = 3 [Woplz + = (Ip’= ——.147)]
L3 r’
41490 = nprly - et +ony (z7-2)] Ip0
o0 i3’ 9
A1a¥°(u,€) = ) [Weunglz’ - — (ng - r’'—1)]}
we€ L
o1 P
499090 = (20 - 2) I3 | 41290 (€)= -alwepIz ¢ — 13%)
W
A34%0 = - nyr 13”
Iy° z'-2 3
A12%8(p, €) - JiweunpIy + — [ny- - (27-Z) =]}
we€ r’ a1’
41171 = - (rtIyv- pIpt) | AgR%h(E) = 3 (z'-z)-14”
weer’
i «B = rl, o0, zl
A2%B = K. 4449B K :{ [ '
-1 otherwise
1 o«B = rl, zl
ApqOB - K"Aza“? K’=
- 1 otherwise
where:
- JKR
i n : R 3
Ip|= er'j G.cos (©)./cos(pO)|d® ; g : ; R= |Pr-r|
'$1N(pO) 4TR
3 0
) L I ' P
?l2[= arﬂ[ ~— -cos(0) -|cos(pe)| @® ; G’ = — ;B =z (Np, O, Nz)
3 ° R sin(p6) dR

are, respectively, the whole field in r, its § and / components at a
point !’ of the boundary and a A4, , coefficient matrix (see Table
D). These depend on the medium’s geometry, their electromag-
netic characteristics (€, p), the frequency w,, and the mode pa-
rameter p.

Equation (2) is solved by using a moment method technique.
The boundary L is divided into N intervals, A, (see Fig. 1),
centered on the N points @, (j=1,2,---, N). The fields in the
boundary ¢(!’) can be approximated by a linear combination of
pulse functions defined on the intervals A .

Then, a point matching technique is used, on the N points Q ,
by considering the different homogeneous dielectric regions of
the structure with its coupling boundary conditions. The follow-
ing system of equations is obtained:

(4)

where X, represents all the unknown coefficients associated with
the fields in all the boundaries involved.

The solution of the homogeneous system of equations (4)
determines the frequency spectrum, w,, and the coefficients X of
the field components ey, hy, €, and #; in the boundaries. When
these coefficients are known, (2) can be used to calculate the field
components at any point r in the system.

M
ZlB,,,(wt.)X/=0, i=1,-- M
a

III. APPLICATIONS

In order to verify the effectiveness of the described method, we
present some of the results corresponding to the analysis of two
systems which allow a simple analytical contrast: a) a dielectric-
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TABLE II

THEORETICAL AND CALCULATED RESONANT FREQUENCIES (k, R) FOR

SEVERAL MODES OF (a) A DIELECTRIC-L.OADED CAVITY (STRUCTURE
ASIN F16. 2(2)) R =225 mm, L =39 mm, T=19.5 mm, ¢, =10) AND

(b) A CYLINDRICAL DIELECTRIC RESONATOR SHORT-CIRCUITED AT

BotH ENDs BY PARALLEL CONDUCTING PLATES
(STRUCTURE AS IN FIG. 2(b)) R =7 mm,
L="7.5mm, ¢, =35)

k.R
mode theor. |calcul.
oy, | 0-935 | 0.953
™., | 0.987 | 0.976
Ty, | 1.333 | 1.323
Tooyp | 1-309 1.508
Ty, | 1768 | 1.768
TE ., | 1.882 1.867
™, | 2,056 | 2.013
TEy,, | 2.249 | 2.241
TEg, 5 | 3-190 | 3.180

(a)

kiR

mode theoriZcalcul.
”Emlll 0.620 0.628
TEo . 0.712 0.712
T, | 0-810 0.813
Ml L,y | 04877 0.895
R 4, | 1.0%0 1.047
wa o | 1,062 1.052
TE oy 1.111 1.110
TE, 1.133 1.135
10 1.182 1.183
HEV ) oo | 14258 1.240
™01 1.272 1.274

(b)

loaded metallic cavity and b) a short-circuited dielectric res-
onator (for trapped modes) [12]. Through these the most notice-
able aspects in applying the method can be seen.

Table II shows the numerical values obtained for the parame-
ter koR, where k3 = wgp,, for different modes in the two
systems. In Fig. 2 we present the fields within the boundaries for
some of the modes appearing in Table II. The boundaries of the
systems are divided into (a) 44 and (b) 15 intervals.

As can be appreciated, with a moderate discretization the
results are generally quite accurate, with an error in the frequency
less than or on the order of 1 percent.



1816

TE 111

conductin
{Slates o

TMoa21

IMmu

0
3r

r-o R

(b)

Fig. 2. The distribution of the 4, field component at the metallic surface for
(a) the TMy,;; and TE;;; modes on diclectric-loaded cavity and (b) the
TMy,; and TMg,; modes on shielded dielectric resonator.

IV. CoNcrLusIONs

The numerical results obtained in studying several systems
confirm the validity of the method and its wide fields of applica-
tions. Theoretically it is worth noting the simplicity and general-
ity of the formulation, which allow such problems as unbound
systems to be tackled, something that is difficult with other
techniques. The complexity of the numerical procedure is not
excessive and the consideration of a low number of intervals in
the boundary partition leads to quite accurate results (errors in
frequency being less than 1 percent). '
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An Experimental Investigation of the Microstrip
Step Discontinuity

JAMES C. RAUTIO, MEMBER, IEEE

Abstract —Measurements of a cascade of microstrip step discontinuities
are compared with results of an electromagnetic analysis and with models
available in commercial software. The experimental validation technique,
which can be applied to other discontinuities, is described.

I. INTRODUCTION

This paper describes a broad-band validation technique as
applied to a step discontinmity. The technique was developed for
the validation of the electromagnetic (em) analysis [1]-[3].

While there are many results for the step, most [4]-[11],
[171-[19] specify non-50-2 S parameters. Since the normalizing
impedances, which allow conversion to 50 € (especially in regard
to reflection phase), are rarely specified, it is difficult to compare
results. Instead, we compare with the 50-Q § parameters pro-
vided by most commercial models.

Koster and Jansen [4] state that measurement of the step
“seems hardly feasible with the present state-of-the-art,” as the
discontinuity effect is small at low frequencies (where accurate
measurements are possible) and is difficult to measure at high
frequencies. Many validation attempts involve measurement of a
single discontinuity at high frequency, resulting in an undesirably
large scatter [8]-[14].

Resonance techniques [23] are especially suited to non-50-Q
modeling and could have been applied in the above cases. The
technique is useful for generating low-loss two-port discontinuity
models. The technique described here is applicable to lossy and
multiport validation but not for generating models or for non-
50-2 systems. Our results suggest that the reflection phase of a
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